The direct operated control valve D1FP of the nominal size NG06 (CETOP 03) shows extremly high dynamics combined with maximum flow. It is the preferred choice for highest accuracy in positioning of hydraulic axis and controlling of pressure and velocity.

Driven by the patented VCD[®] actuator the D1FP reaches the frequency response of real servovalves. Compared with solenoid driven valves the D1FP can also be used in applications with pressure drops up to 350 bar across the valve. Because of the high flow capability the D1FP can be a substitute for NG10 valves in some cases.

At power-down the spool moves in a defined position. All common input signals are available.

Features

- Real servovalve dynamics (-3 dB / 350 Hz at ±5 % input signal)
- No flow limit up to 350 bar pressure drop through the valve
- Max. tank pressure 350 bar (with external drain port y)
- High flow
- Defined spool positioning at power-down optional P-A/B-T or P-B/A-T or center position (for overlapped spools)
- Onboard electronics

CE

Series D1FP

Direct Operated Proportional DC Valve

3

Note:

Adapter plate for ISO 4401 to ISO 10372 size 04, Ordering code HAP04WV06-1661

Please order connector separately, see chapter 3 accessories.

Parametrizing cable OBE -> RS232, item no. 40982923

- ¹⁾ On power down the spool moves in a defined position. This cannot be guaranteed in case of single flow path on the control edge A T resp. B T with pressure drops above 120 bar or contamination in the hydraulic fluid.
- ²⁾ Approx. 10 % opening, only zero lapped spools and underlap spools.
- ³⁾ Only for overlapped spools.
- ⁴⁾ Not for flow code M (40 l/min).
- $^{\scriptscriptstyle 5)}$ Plug in the Y-port needs to be removed at tank pressure >35 bar.

General							
Design			Direct operated servo proportional DC valve				
			VCD [®] actuator				
Size			NG06 / CETOP 03 / NFPA D03				
Mounting interface			DIN 24340 / ISO 4401 / CETOP RP121 / NFPA				
Mounting posit			unrestricted				
Ambient tempe		[°C]	-20+50				
MTTF _D value ¹⁾		[years]					
Weight		[kg]					
, second second		1	10 Sinus 52000 Hz acc. IEC 68-2-6				
Vibration resist	ance	[0]	30 Random noise 202000 Hz acc. IEC 68-2-36				
		191	15 Shock acc. IEC 68-2-27				
Hydraulic							
		[bar]	Ports P, A, B 350, port T 35 for internal drain, 350 for external drain, port Y 35 ²⁾				
Fluid			Hydraulic oil according to DIN 51524 535, other on request				
		[°C]	-20+60 (NBR: -25+60)				
		[cSt]/mm ² /s]					
recommended [cSt]/mm²/s]							
Filtration			ISO 4406 (1999); 18/16/13				
Nominal flow							
at ∆p=35 bar p	er control edge 3)	[l/min]	3 / 6 / 12 / 16 / 25 / 40				
		[l/min]	90 (at ∆p=350 bar over two control edges)				
Leakage at 10	[]		<400 (zerolap spool); <50 (overlap spool)				
Opening point	· · ·		set to 23 commande signal (see flow characteristics)				
Static / Dynan	nic						
	at 100 % step 4)	[ms]	<3.5				
Frequency res							
(±5 % signal) 4			350 (amplitude ratio -3 dB), 350 (phase lag -90°)				
		[%]	<0.05				
Sensitivity			<0.03				
-	,		<0.025				
Electrical cha							
Duty ratio		[%]	100				
Protection clas	S		IP65 in accordance with EN 60529 (with correctly mounted plug-in connector)				
Supply voltage	/ripple	[V]	DC 22 30, electric shut-off at < 19, ripple < 5 % eff., surge free				
Current consur			3.5				
			4.0 medium lag				
Input signal							
Code B	Voltage	[V]	10010, ripple <0.01 % eff., surge free, 0+10 V P->A				
	Impedance	[kOhm]					
Code E	Current	[mA]	20020, ripple <0.01 % eff., surge free, 0+20 mA P->A				
	Impedance	[Ohm]					
Code S	Current		41220, ripple <0.01 % eff., surge free, 1220 mA P->A				
			<3.6 mA = disable, >3.8 mA = according to NAMUR NE43				
	Impedance	[Ohm]	250				
Differential inp	ut max.						
	Code 0	[V]	30 for terminal D and E against PE (terminal G)				
	Code 5	[V]	30 for terminal 4 and 5 against PE (terminal ≟)				
	Code 7	[V]	30 for terminal D and E against PE (terminal G)				
			530, Ri = 9 kOhm				
			+10010 / +12.5 error detection, rated max. 5 mA				
EMC			EN 61000-6-2, EN 61000-6-4				
Electrical connection Code 0/7		Code 0/7	6 + PE acc. EN 175201-804				
Electrical conn	ection	Code 5	11 + PE acc. EN 175201-804				
Wiring min.	Code 0/7	[mm²]	7x1.0 (AWG 16) overall braid shield				
	Code 5		8x1.0 (AWG 16) overall braid shield				
Wiring length r	nax.	[m]	50				

¹⁾ If valves with onboard electronics are used in safety-related parts of control systems, in case the safety function is requested, the valve electronics voltage supply is to be switched off by a suitable switching element with sufficient reliability.

²⁾ For applications with p_{τ} >35 bar (max. 350 bar) the Y-port has to be connected and the plug in the Y-port has to be removed.

³⁾ Flow rate for different Δp per control edge: $Q_x = Q_{Nom.} \cdot \sqrt{\frac{\Delta p_x}{\Delta p_{Nom.}}}$

⁴⁾ Measured with load (100 bar pressure drop/two control edges).

Flow curves

(Overlapped spool set to opening point 23 %) at Δp = 35 bar per metering edge Spool type **E01/E50**

Pressure gain

Frequency response

±5 % command signal ±90 % command signal

All characteristic curves measured with HLP46 at 50 °C.

D1FP UK.indd RH 17.04.2015

Functional limits

at 25 %, 50 %, 75 % and 100 % command signal Spool type **E01M/E50M**

Code 0

3

Code 5

Code 7

ProPxD interface program

The ProPxD software allows quick and easy setting of the digital valve electronics. Individual parameters as well as complete settings can be viewed, changed and saved via the comfortable user interface. Parameter sets saved in the non-volatile memory can be loaded to other valves of the same type or printed out for documentation purposes.

The PC software can be downloaded free of charge at www.parker.com/euro_hcd – see page "Support" or directly at www.parker.com/propxd.

Features

- Comfortable editing of valve parameters
- · Saving and loading of customized parameter sets
- Executable with all Windows[®] operating systems from Windows[®] XP upwards
- Simple communication between PC and valve electronics via serial interface RS232C

The valve electronics cannot be connected to a PC with a standard USB cable – this can result in damages of PC and/or valve electronics.

3

The parametrizing cable may be ordered under item no. 40982923.

Options Diagnostics	Special	s Help G	<i>4</i>		
basic	D'FP/	E Param.			
PC settings	1000	PC Modu			Module setting
Contraction and the second	Na	Value	Description	Module ^	Type
*	E17		Command Input (see Installation man)		no modul
100	E19	0	cable break detection cmd in 1= active(4_20mA)		110 110004
D*FP/D*FE	E25	100	MIN operating threshold [0,01%]	1 E.	Design series ????
	P1	0.0	Zero Adjust [%]		
we 1	P3	100.0	Max [%] A-channel		
	P4	100.0	Max [%] B-channel		7777
	P7	0.0	Min (%) A-channel		Valve
default	P8	0.0	Min (%) B-channel		
		_			Channel "A"
					7777 Channel '8" 7777
				2	Parke
					Contraction of the local division of the loc
					Beceive all
	-	-			
d l					Sendial
langer					
t10/=1					
120mA -2					
420mA +3					T
4-20mA =3 1 ±10mA =5		-			

Surface finish	🗦 🛄 Kit	E F	5-7	🔿 Kit
	BK375	4x M5x30 ISO 4762-12.9	7.6 Nm ±15 %	NBR: SK-D1FP FPM: SK-D1FP-V HFC: SK-D1FP-H